ATLAS: A Geometric Approach to Learning High-Dimensional Stochastic Systems Near Manifolds

نویسندگان

  • Miles Crosskey
  • Mauro Maggioni
چکیده

When simulating multiscale stochastic differential equations (SDEs) in high-dimensions, separation of timescales, stochastic noise and high-dimensionality can make simulations prohibitively expensive. The computational cost is dictated by microscale properties and interactions of many variables, while the behavior of interest often occurs at the macroscale level and at large time scales, often characterized by few important, but unknown, degrees of freedom. For many problems bridging the gap between the microscale and macroscale by direct simulation is computationally infeasible. In this work we propose a novel approach to automatically learn a reduced model with an associated fast macroscale simulator. Our unsupervised learning algorithm uses short parallelizable microscale simulations to learn provably accurate macroscale SDE models, which are continuous in space and time. The learning algorithm takes as input: the microscale simulator, a local distance function, and a homogenization spatial or temporal scale, which is the smallest time scale of interest in the reduced system. The learned macroscale model can then be used for fast computation and storage of long simulations. We prove guarantees that related the number of short paths requested from the microscale simulator to the accuracy of the learned macroscale simulator. We discuss various examples, both lowand high-dimensional, as well as results about the accuracy of the fast simulators we construct, and its dependency on the number of short paths requested from the microscale simulator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Differential geometry and stochastic dynamics with deep learning numerics

In this paper, we demonstrate how deterministic and stochastic dynamics on manifolds, as well as differential geometric constructions can be implemented concisely and efficiently using modern computational frameworks that mix symbolic expressions with efficient numerical computations. In particular, we use the symbolic expression and automatic differentiation features of the python library Thea...

متن کامل

Invariant Manifolds for Stochastic Partial Differential Equations

Invariant manifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invariant manifolds for infinite dimensional random ...

متن کامل

ar X iv : m at h / 04 09 48 5 v 1 [ m at h . D S ] 2 4 Se p 20 04 INVARIANT MANIFOLDS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

Annals of Probability 31(2003), 2109-2135. Invariant man-ifolds provide the geometric structures for describing and understanding dynamics of nonlinear systems. The theory of invariant manifolds for both finite and infinite dimensional autonomous deterministic systems, and for stochastic ordinary differential equations is relatively mature. In this paper, we present a unified theory of invarian...

متن کامل

Semi-supervised Learning Using an Unsupervised Atlas

In many machine learning problems, high-dimensional datasets often lie on or near manifolds of locally low-rank. This knowledge can be exploited to avoid the “curse of dimensionality” when learning a classifier. Explicit manifold learning formulations such as lle are rarely used for this purpose, and instead classifiers may make use of methods such as local co-ordinate coding or auto-encoders t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017